

Managing Flooding in Place

URBAN FLOODING

Main Causes of Urban Flooding

- Pre-1970, small creeks often enclosed in storm drains, usually severely undersized
- Street grid often ignored drainage patterns, leading to mid-block sumps
- Homes and buildings constructed over these creeks and storm drains, with overflow path running through them

Typical Older Neighborhood

The Challenge

In most situations we must find a bit of compromise in all three elements.

Volume Issues

Valley Storage:
Undersized pipes
cause floodwater
to be stored in
neighborhoods,
decreasing the
peak flows
downstream.

Timing Issues

SUB-BASIN 7a 100-YR HYDROGRAPH COMPARISON

No Adverse Impact

- "No Adverse Impact floodplain management takes place when the actions of one property owner are not allowed to adversely affect the rights of other property owners." (ASFPM, 2008)
- Consistent with Texas Water Code §11.086 and similar laws in other states.

Understanding Risk

- Usually public safety not a major threat
- Zone X: nothing hinders rebuilding
- Chronic flooding vs. periodic flooding
- Manage flooding like other risks in life
- Flood risk management:
 - Avoidance: move out
 - Coping: minor prevention and repair
 - Insurance: limit economic losses

Net Present Value of Damages

Challenge of Urban Flooding

- Urban flooding solutions must be
 EFFECTIVE, AFFORDABLE & ACCEPTABLE
- NO ADVERSE IMPACT principles require evaluating downstream impacts
- INCREMENTAL improvements may be the only cost-effective option
- MANAGING FLOODING IN PLACE is likely to be most feasible solution

Managing Flooding in Place

DETENTION OVERVIEW

Mimicking Pre-Developed Hydrology

Detention Advantages

- Detention and valley storage decrease flooding impacts continuously
- Much cheaper to build (except for land costs)

Local vs. Regional Detention

- Many small detention basins can cancel each other out by stacking peaks
- One regional basin is more economical than several smaller basins
 - Smaller total footprint (less land)
 - Less total maintenance cost
 - Larger enough for multiple public uses
- Several regional basins easier to model together than numerous small basins

NOT THIS!

- Historically, detention viewed as fenced-off drainage facility
- End up as eyesores and wasted land

Multi-Use Detention

Detention areas can be used for aesthetics and water quality

Multi-Use Detention

Detention areas can be used for recreation and open space

Detention Basin—Neighborhood Park

Neighborhood Integrity

- Empty lots
 destroy
 neighborhood
 integrity
- Linear parks, greenways and pocket parks enhance neighborhoods

Integrated with Redevelopment Plans

Daylighting Streams

Storm Drain with Overflow Swale

Managing Flooding in Place

HOW DO YOU APPLY IT?

Look for Opportunity

- Know where your flooding is
- Identify available land
- Look for partners:
 - Parks department
 - School districts
 - Developers
 - HOAs or POAs (formal organizations)
 - Business development groups
 - Neighborhood associations

Eastern Hills Detention Basin

Partner project with Fort Worth ISD

Luella Merrett Detention Basin

Another partner project with Fort Worth ISD

Managing Flooding in Place

QUESTIONS?